This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies
By closing this message or continuing to use our site, you agree to our cookie policy. Learn More
This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Process Cooling logo
search
cart
facebook twitter linkedin youtube
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Process Cooling logo
  • Home
  • Magazine
    • Current Issue
    • Digital Editions
    • Archives
    • News
    • Products
    • Columns
    • Commentary
    • Web Exclusives
  • Multimedia
    • Podcasts
    • eNewsletter
    • PC Mobile App
    • Photo Galleries
    • Videos
    • Webinars
  • Technology
    • Air Cooling
    • Ammonia Refrigeration
    • Cryogenic Systems
    • Equipment Cooling
    • Flow Control/Monitoring
    • Heat Transfer
    • Industrial Gases
    • Leak Detection
    • Temperature Control/Sensing
    • Water Cooling
    • Water Treatment
  • Equipment
    • Chillers
    • Compressors/Condensers
    • Cooling Towers
    • Enclosure Cooling
    • Fans & Blowers
    • Filtration
    • Heat Exchangers/Coils
    • Pumping
    • Refrigeration Systems
    • Valves & Piping
  • Design/Build
  • Industry Focus
    • All Process Industries
    • Beverages & Breweries
    • Chemicals/Petrochemicals
    • Cosmetics & Fragrances
    • Dairy Foods
    • Electronics
    • Food Processing
    • Pharmaceuticals
    • Power Plants
    • Plastics
    • Soaps/Cleaners
  • Resources
    • Events
    • Classifieds
    • Custom Content & Marketing Services
    • Market Research
    • Store
    • White Papers
  • Directories
    • Buyers Guide
    • Cooling Capabilities
    • Take a Tour
    • Heat Transfer Fluids
  • Contact
    • Advertise
    • Contact Us
  • Subscribe
    • Print Edition Subscription
    • Digital Edition Subscription
    • eNewsletters
    • Online Registration
    • Customer Service
Home » Magnetic Cooling Shows New Promise Following Material Discovery
News

Magnetic Cooling Shows New Promise Following Material Discovery

January 29, 2009
Reprints
No Comments
A refrigerator's humming, electricity-guzzling cooling system could soon be a lot smaller, quieter and more economical, thanks to an exotic metal alloy that could permit magnetic cooling instead of the gas-compression systems.

NIST scientists may have found a way to use magnetocalorics in your fridge. Conventional and magnetic refrigeration cycles use different physical effects to cool things off.
LEFT: In conventional refrigeration, when a gas is compressed (2), it heats up, but if it is cooled and then allowed to expand (3), its temperature drops much lower than it was originally (4); this principle keeps food in your home refrigerator cool.
RIGHT: A magnetocaloric material heats up when magnetized (b); if cooled and then demagnetized (c), its temperature drops dramatically (d).

Credit: Talbott, NIST


A refrigerator's humming, electricity-guzzling cooling system could soon be a lot smaller, quieter and more economical, thanks to an exotic metal alloy discovered by an international collaboration working at the National Institute of Standards and Technology (NIST)'s Center for Neutron Research (NCNR). The alloy may prove to be the long-sought material that will permit magnetic cooling instead of the gas-compression systems used for home refrigeration and air-conditioning.

Though used for decades in industry and science, the magnetic cooling technique has yet to find application in the home because of technical and environmental hurdles. The NIST collaboration -- a team of scientists from NIST, Beijing University of Technology, Princeton University and McGill University -- may have overcome them.

Magnetic cooling relies on materials called magnetocalorics, which heat up when exposed to a powerful magnetic field. After they cool off by radiating this heat away, the magnetic field is removed, and their temperature drops again, this time dramatically. The effect can be used in a classic refrigeration cycle, and scientists have attained temperatures of nearly absolute zero this way. Two factors have kept magnetic cooling out of the consumer market: most magnetocalorics that function at close to room temperature require both gadolinium, a prohibitively expensive rare metal, and arsenic, a deadly toxin.

But conventional gas-compression refrigerators have their own drawbacks. In addition, it is becoming increasingly difficult to improve traditional refrigeration. “The efficiency of the gas cycle has pretty much maxed out,” said Jeff Lynn of NCNR. “The idea is to replace that cycle with something else.”

The alloy the team has found is significant for two key reasons. The alloy - a mixture of manganese, iron, phosphorus and germanium - is the first near-room-temperature magnetocaloric to contain neither gadolinium nor arsenic, rendering it both safer and cheaper. In addition, it has such strong magnetocaloric properties that a system based on it could rival gas compression in efficiency.

Working alongside (and inspired by) visiting scientists from the Beijing University of Technology, the team used NIST’s neutron diffraction equipment to analyze the novel alloy. They found that when exposed to a magnetic field, the newfound material’s crystal structure completely changes, which explains its exceptional performance.

“Understanding how to fine-tune this change in crystal structure may allow us to get our alloy’s efficiency even higher,” says NIST crystallographer Qing Huang. “We are still playing with the composition, and if we can get it to magnetize uniformly, we may be able to further improve the efficiency.”

The team of scientists working on the project published their findings, "Origin and tuning of the magnetocaloric effect for the magnetic refrigerant MnFe(P1-xGex)," in Physical Review B. Vol. 79, 014435 (2009).

Links

  • National Institute of Standards and Technology (NIST)

Subscribe to Process Cooling

Related Articles

Magnetic Materials Show Cool Promise

Refrigeration Show Promises Learning Opportunities

Water Desalination "on Ice" Show Promises to Produce Clean Water

Testing of Factory Equipment Network Shows Promise

You must login or register in order to post a comment.

Report Abusive Comment

Subscribe For Free!
  • Print Edition Subscriptions
  • Digital Edition Subscriptions
  • eNewsletters
  • Online Registration
  • Subscription Customer Service

More Videos

Popular Stories

hybrid cooler

Hybrid Cooling Saves Water, Reduces Energy Use

field-erected cooling tower

An Alternative to Field-Erected Cooling Towers

descaling cooling towers

Cleaning Scale from Cooling Tower Systems

News_900

Partnership Focused on Industrial Refrigeration

111319-HRS

Turnkey Cooling System Increases Marinade Production

CoolingCapabilities_360


Events

January 1, 2030

Webinar Sponsorship Information

For webinar sponsorship information, visit www.bnpevents.com/webinars or email webinars@bnpmedia.com.

View All Submit An Event

Poll

What Do You Look For in a Process Cooling Equipment Supplier?

Let’s talk purchasing: When specifying and purchasing industrial process cooling equipment, what about an equipment supplier is the most important to you?
View Results Poll Archive

Products

Refrigeration Systems and Applications, 3rd Edition

Refrigeration Systems and Applications, 3rd Edition

See More Products

events_360

Process Cooling Magazine

Process Cooling November/December 2019

2019 November/December

Check out the November/December 2019 edition of Process Cooling: Tackling tower scale, hybrid cooling, energy conservation, paper mills and plastic towers and much more!
View More Create Account
  • Resources
    • Manufacturing Group
    • List Rental
    • Contributor Guidelines
    • Web Exclusives
    • Product of the Month
    • Partners
    • Manufacturers Photo Gallery
    • Polls
    • Survey and Sample
  • Want More
    • Connect
    • Privacy Policy

Copyright ©2019. All Rights Reserved BNP Media.

Design, CMS, Hosting & Web Development :: ePublishing