This website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
This Website Uses Cookies By closing this message or continuing to use our site, you agree to our cookie policy. Learn MoreThis website requires certain cookies to work and uses other cookies to help you have the best experience. By visiting this website, certain cookies have already been set, which you may delete and block. By closing this message or continuing to use our site, you agree to the use of cookies. Visit our updated privacy and cookie policy to learn more.
Properly engineered condenser, chiller and cooling tower piping and controls will improve heat transfer and avoid problems such as air slugging and pumps losing prime.
For most industrial manufacturing, electric power generation and even air-conditioning needs, cooling towers are a critical element of the design. Cooling towers work on the principle of heat rejection: They extract heat to the atmosphere through evaporative cooling. The towers themselves are enclosed, steady-flow devices for cooling water by evaporation through direct contact with air. Cooling towers are used in water-cooled refrigeration, industrial process systems and commercial HVAC air-conditioning.
A simple way to appreciate how a cooling tower works is to consider the “beach effect.” On a 95°F (35°C) day with 95 percent humidity, a dip in the water is incredibly refreshing. When you get out of the water and are still damp, what happens when a breeze blows? You feel cool as the breeze evaporates the water on your skin. This is the basic premise behind evaporatively cooled equipment.